价值20亿美元的AI Agent秘密:三个Markdown文件如何解决上下文漂移难题

Meta刚以20亿美元收购了Manus。一位开发者深入研究了其核心工作原理,并将关键模式开源分享。

AI Agent面临一个普遍困境:经过大量工具调用后,它们会逐渐迷失目标。上下文膨胀、错误被淹没、任务偏离轨道。

Manus的解决方案出奇简单——仅用三个Markdown文件:

- task_plan.md:用复选框追踪进度
- notes.md:存储研究内容,避免塞满上下文
- deliverable.md:最终交付物

核心机制是:Agent在每次决策前都会重新读取计划文件,确保目标始终停留在注意力窗口内。

这个发现引发了社区热烈讨论,也暴露出一些关键洞见:

关于"这不是什么新东西"的质疑,确实如此。Claude Code本身就会自动创建plan.md文件,Spec-kit、APM等开源工具早已实现类似工作流。但这恰恰验证了这个模式的有效性——当多个独立开发者不约而同地收敛到同一解决方案时,说明它确实解决了真实问题。

关于"写入notes.md不也是在填充上下文吗"的技术追问,这是个精准的观察。写入操作确实会产生token消耗。但关键不在于减少token数量,而在于注意力操控。LLM存在"大海捞针"问题——随着上下文增长,它们会逐渐遗忘早期目标。通过在每次重大决策前重新读取计划文件,目标被强制拉回注意力窗口。

社区提出了更进阶的方案:使用子Agent处理上下文密集型任务。主Agent保持轻量,只负责追踪进度和协调;子Agent在独立上下文中完成繁重工作后汇报结果。这样既保持了主Agent上下文的清洁,又能处理复杂任务。

一位开发者分享了他的实战经验:将Claude视为员工,一次只分配一个任务,每完成一步就提交git,全程人工审核。这是8小时工作日的节奏,不是"设置后就忘"的自动化。

关于工作流设计的最佳实践:保持CLAUDE.md极度精简,只描述核心行为预期;将数据库、API等专项知识拆分到独立文件,仅在相关任务时加载;维护一个愿望清单,让未来功能不干扰当前工作。

有人一针见血地指出:20亿美元买的不是三个Markdown文件,而是一家6个月创造1亿美元收入的公司,以及其虚拟机能力、浏览器自动化和完整Agent平台。这个模式只是其中一块拼图。

这场讨论揭示了一个更深层的趋势:上下文工程正在成为一门独立学科。我们正在见证"Agent工程师"这个新角色的诞生——他们是软件工程师,但具备云服务、API和Agent能力的综合知识。

最实用的一句话总结来自社区:Claude是我的员工,我给它分配任务、检查每个任务、控制每个步骤。不要试图让Claude一次完成所有事情,那是不可能的。

reddit | 原始技能仓库 |Spec-kit |多Agent管理框架APM | Manus上下文工程博客
 
 
Back to Top
粤ICP备2021131327号